2243

ESENTASIS THERAPEUTICS

Global Surveillance of the Activity of Sulbactam combined with the Novel *β*-lactamase Inhibitor ETX2514 against Clinical Isolates of Acinetobacter baumannii from 2014

Abstract

Background: Multidrug-resistant Acinetobacter baumannii infections are considered a serious threat by the Centers for Disease Control and other government agencies. They are among the most difficult to treat and are associated with high mortality rates due to the limited number of effective therapies available and inappropriate initial treatment choice. The novel diazabicyclooctenone β-lactamase inhibitor ETX2514 effectively restores the antibacterial activity of sulbactam against multidrug resistant (MDR) A baumannii due to its potent inhibition of class A, C and D serine β-lactamases which are commonly found in this organism.

Methods: The in vitro activity of sulbactam-ETX2514 and comparator antibiotics was determined against clinical isolates of A. baumannii using the broth microdilution methodology recommended by the Clinical and Laboratory Standards Institute (CLSI). A total of 1,131 isolates were obtained from hospitalized patients in 151 medical centers within 38 countries during the year 2014.

Results: The activity of sulbactam-ETX2514 was 16-fold higher than that of sulbactam alone (MIC₅₀ values of 1 and 16 mg/L, respectively, and MIC₉₀ values of 4 and 64 mg/L, respectively). This increased activity was maintained against all subsets of resistant phenotypes including meropenem-resistant. colistin-resistant, multidrug-resistant, ESBL-positive, and non-MBL isolates, as well as isolates containing Ambler class D β-lactamases. There was a two-fold lower MIC for sulbactam-ETX2514 compared to sulbactam (32 vs 64 mg/L) alone against the one A. baumannii isolate carrying a gene encoding an MBL. MIC₅₀ and MIC₉₀ values were also remarkably consistent across subsets of isolates from different sources, from pediatric patients, and from the five geographic regions.

Conclusion: The activity of sulbactam-ETX2514 observed in this study suggests that further *in vitro* and clinical investigation is warranted to explore the utility of this agent against this difficult-to-treat nosocomial pathogen.

Introduction

Infections caused by multidrug resistant bacterial pathogens are increasing dramatically via the spread of a number of different resistance mechanisms. One of the most remarkable is the rapid rise in the number and diversity of β -lactamases. Although several new β-lactamase inhibitors have recently been approved or are in clinical trials, their spectrum of activity does not address problematic multidrug resistant (MDR) pathogens such as Acinetobacter baumannii, a nosocomial pathogen which can cause severe infections with high mortality rates [1]. Even carbapenems have become ineffective against A. baumannii, due, in large part, to the emergence of class D βlactamases [2].

Sulbactam is a class A β -lactamase inhibitor with intrinsic antibacterial activity against A. baumannii; however, its therapeutic utility has been compromised by its susceptibility to recently acquired β-lactamases in this pathogen. ETX2514 is a novel diazabicyclooctenone BLI with broad-spectrum activity against class A, C and D βlactamases, including those that degrade sulbactam. Therefore a combination of sulbactam and ETX2514 is currently being investigated for the treatment of drugresistant A. baumannii infections. Accordingly, a surveillance study was conducted in 2014 to evaluate the *in vitro* activity of sulbactam-ETX2514 and comparator agents against contemporary clinical A. baumannii isolates collected from 151 medical centers around the world.

Methods

Bacterial strains: All isolates were obtained from specimens collected from patients with documented intra-abdominal infections (IAI), urinary tract infections (UTI), skin and soft tissue infections (SSTI), blood cultures, or lower respiratory tract infections (LRTI). Only one strain per patient infection episode was included in the surveillance program. Figure 1 shows the participating medical centers by region and country. Each site sent 7 - 8 isolates per medical center to a central laboratory, Laboratories International for Microbiology Studies (LIMS) a subsidiary of International Health Management Associates, Inc. (IHMA) in Schaumburg, IL, where the isolates were further evaluated and stored. Organism transport, confirmation of organism identification, quality assurance of data, and development and management of a centralized database were conducted by IHMA's central laboratory in the United States.

Susceptibility Testing: Minimum inhibitory concentrations (MICs) were determined using frozen broth microdilution panels prepared at IHMA. All broth microdilution testing, including panel manufacture, inoculation, incubation, inclusion/testing of quality control strains and data interpretation, was conducted following current CLSI guidelines [3]. Where indicated, ETX2514 was added at a concentration of 4 mg/L.

Determination of β-lactamase content: Any A. baumannii isolate which was resistant to meropenem or imipenem (MIC \geq 8 mg/ L) was molecularly characterized according to the flowchart below. Genomic DNA was extracted from overnight colonies grown on blood agar using the QIAamp DNAMini Kit and the QIAcube instrument according to the manufacturer's instructions. A. baumannii isolates were first screened for the presence of *bla*_{OXA-23}, *bla*_{OXA-24}, and *bla*_{OXA-58}. If no OXA-type *bla* genes were detected, screening for bla_{VEB}, bla_{PER}, bla_{GES}, bla_{SPM}, bla_{IMP}, bla_{VIM}, bla_{NDM}, and bla_{KPC} was carried out in a single multiplex PCR reaction and *bla_{GIM}* was screened separately in a singleplex PCR reaction. Multiplex PCR reactions to detect all genes but *bla*_{GIM} were performed using the Multiplex PCR kit (Qiagen), whereas the GIM reaction was performed using the Fast Cycling PCR kit (Qiagen). All genes were amplified for sequencing using the Fast Cycling PCR kit (Qiagen) per the manufacturer's instructions. Sanger sequencing of both strands of each PCR amplicon was performed at GENEWIZ, Inc. (South Plainfield, NJ). Sequence data was analyzed using SeqScape v.2.7 (Applied Biosystems) and compared to sequences available from the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov) and the Lahey Clinic (www.lahey.org).

Notes on genotypes and phenotypes:

- contain genes encoding other β -lactamases.
- CLSI interpretive criteria [4].

M. Hackel¹, S. Bouchillon¹, B. deJonge², <u>K. Lawrence³</u>, J. Mueller³, R. Tommasi³ and A. Miller³ ¹International Health Management Associates, Inc., Schaumburg, IL USA; ²AstraZeneca and ³Entasis Therapeutics, Waltham, MA USA

Based on the above testing scheme, any isolate defined as "ESBL" or "MBL" may also

"Non-MBL" was defined as any isolate for which an MBL gene was not detected by PCR. Note that this group may contain isolates with an MBL gene, but these went undetected if the isolates also contained a gene encoding an OXA β-lactamase.

"MDR" was defined as any isolate that was resistant to three or more drug classes by

Demographics

Figure 1. Origins of clinical isolates by region (inner circle) and country (outer circle). The number of isolates from a given country is indicated in parentheses

Table 1. Resistant subsets listed by region

Genotype or subgroup	Asia/ Pacific	Europe	Latin/ South America	MidEast/ Africa	United States	Grand Total	Percent Total
Acinetobacter baumannii (all)	172	588	152	114	105	1131	
meropenem-resistant (MIC of ≥8 mg/L)	109	362	117	84	59	731	64.6
colistin-resistant (MIC of ≥4 mg/L)	2	41	1	5	7	56	5
MDR	109	401	127	80	61	778	68.8
ESBL (molecular)		6	4	1		11	1
MBL			1			1	0.09
% of Total	15.2	52.0	13.4	10.1	9.3	100	

Table 2. Resistant subsets stratified by infection type

Genotype or subgroup	IAI	UTI	LRTI ≥48 Hrs	LRTI <48 Hrs	SSTI	Blood
Acinetobacter baumannii (all)	77	134	444	109	258	102
meropenem-resistant (MIC of ≥8 mg/L)	57	69	315	75	144	68
colistin-resistant (MIC of ≥4 mg/L)	1	4	23	7	17	4
MDR	58	74	326	77	168	72
ESBL (molecular)			8	1	2	
MBL						1
% of Total	6.8	11.9	39.3	9.6	22.8	9.0

IAI, intra-abdominal infection; UTI, urinary tract infection; LRTI ≥48 hrs, hospital-associated lower respiratory tract infection; LRTI <48 hrs, non-hospitalassociated lower respiratory tract infection: SSTI skin and soft tissue infection: Blood blood cultures

Results

Table 3. Global MIC frequency distributions for sulbactam alone or in the presence of 4 mg/L ETX2514

ed in parer	imeses.
France (54)	Lan Jan
	$\frac{1}{6} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000000000000000000000000000000000$
rope = 588 2%	Italy (60) Netherlands (7) Poland (27) Port.
coain (s	Romania (17) Russia (104)
82	

	Drug (mg/L)	N	≤0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	>128	MIC ₅₀	MIC ₉₀		mg/L			CLSI classification		
	Sulbactam	1131			2	4	93	164	95	91	157	271	194	51	9			Drug	Range	MIC ₅₀	MIC ₉₀	%Sus	%Int	%Res
A. baumannii	Cumulative %	Sensitive			0.2	0.5	8.8	23.3	31.7	39.7	53.6	77.5	94.7	99.2	100	16	64	Sulbactam	0.25 - >128	16	64	na	na	na
(all isolates)	SUL-ETX2514	1131	11	7	70	227	405	285	122		1	3						SUL-ETX2514	≤0.06 - 32	1	4	na	na	na
	Cumulative %	Sensitive	1	1.6	7.8	27.9	63.7	88.9	99.6		99.7	100				1	4	Amikacin	<0.25 - >32	>32	>32	42.4	4.8	52.8
	Sulbactam	731						6	22	64	147	245	188	50	9			Aztreonam	<0.06 - >128	64	>128	na	na	na
meropenem-	Cumulative %	Sensitive						0.8	3.8	12.6	32.7	66.2	91.9	98.8	100	32	64	Ceftazidime	0 12 - >128	64	>128	32.5	2.6	64.9
resistant	SUL-ETX2514	731	3	2	12	81	283	230	116		1	3						Colistin		1	2	05 1	0.0	5.0
	Cumulative %	Sensitive	0.4	0.7	2.3	13.4	52.1	83.6	99.5		99.6	100				1	4	Derinenem			2	24.2	1.6	5.0
	Sulbactam	56						4	3	5	6	21	9	7	1			Doripenem	0.06 - >4	>4	>4	34.2	1.0	04.2
colistin-	Cumulative % S	ensitive						7.1	12.5	21.4	32.1	69.6	85.7	98.2	100	32	128	Imipenem	≤0.03 - >8	>8	>8	35.2	1.4	63.4
resistant	SUL-ETX2514	56			2	7	18	25	4									Levofloxacin	≤0.03 - >4	>4	>4	29.4	7.4	63.2
	Cumulative %	Sensitive			3.6	16.1	48.2	92.9	100							2	2	Meropenem	≤0.06 - >8	>8	>8	34.0	1.3	64.6
	Sulbactam	778						8	37	71	149	264	191	49	9			Tigecycline	≤0.015 - >8	1	2	na	na	na
MDR	Cumulative %	Sensitive	-					1	5.8	14.9	34.1	68	92.5	98.8	100	32	64	CLSI susceptibilities of	lefined by CLSI docume	nt M100-S25	[4], where applic	able; na= no l	oreakpoint o	reakpoint defined.
	SUL-ETX2514	778	2	2	16	91	290	253	120		1	3												
	Cumulative %	Sensitive	0.3	0.5	2.6	14.3	51.5	84.1	99.5		99.6	100				1	4							
ГСРІ	Sulbactam	11									1	4	6			6.4	6.4	Table 6 Per	nional counte	and m	olocular	charac	torizat	ion by
	Cumulative %	Sensitive				-	2	2	1		9.1	45.5	100			64	64		uns of meroi	henem-	rosistant	isolate	1011201	
(molecular)	SUL-ETX2514	LL				4	3	3	100							1	\bigcirc	enzyme gro		Jenem	i constant	1301416	3	
	Sulbactam	1				50.4	03.0	90.9	100				1			T	U				<u> </u>			
MBL	SUL-ETX2514	1										1	L								Ame		<u>u</u>	Irica

Table 4. Global MIC frequency distributions for SUL-ETX2514 categorized by infection type

Infection Type	Drug (mg/L)	N	≤0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	>128		ΜΙϹͽͽ
	Sulbactam	77					2	10	10	11	10	18	14	2		16	64
IAI	SUL-ETX2514	77			6	9	25	23	12		1	1				1	4
	Sulbactam	134					15	30	14	6	20	29	13	7		16	64
UII	SUL-ETX2514	134		1	11	32	52	24	14							1	4
IDTI > 19hrc	Sulbactam	444				2	30	53	32	30	67	113	98	16	3	32	64
LR11 <u>></u> 48hrs	SUL-ETX2514	444	3	4	18	84	175	113	47							1	4
Dodiatric	Sulbactam	37				2	8	10	3	1	1	4	7	1		2	64
reuidtric	SUL-ETX2514	37	1	1	5	9	11	8	2							1	2
Total		692															

Table 5. Global MIC frequency distributions for SUL-ETX2514 against meropenem-resistant isolates categorized by enzyme group

Enzyme Group	Drug (mg/L)	Ν	≤0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	>128		MIC ₉₀
ГСОІ	Sulbactam	5									1	3	1				
ESBL	SUL-ETX2514	5					2	3									
GES ESBL-like	Sulbactam	6										1	5				
	SUL-ETX2514	6				4	1		1								
MBL	Sulbactam	1											1				
	SUL-ETX2514	1										1					
OYA	Sulbactam	668							7	54	143	228	180	48	8	32	64
ΟΧΑ	SUL-ETX2514	668	3	2	9	72	263	208	108	0	1	2				1	4
<i>bla</i> -cascade negative	Sulbactam	51						6	15	10	3	13	1	2	1	8	32
	SUL-ETX2514	51			3	5	17	19	7							2	4
Total		731															

Conclusions

- Sulbactam-ETX2514 demonstrated 16-fold increased activity against isolates of A. baumannii compared to sulbactam alone (MIC₉₀ of 4 mg/L versus 64 mg/L).
- This activity was maintained among meropenem-resistant, colistin-resistant, and MDR isolates.
- Sulbactam-ETX2514 showed potent activity against isolates producing class D (OXA-type) β-lactamases
- Sulbactam-ETX2514 was weakly active against one isolate containing a class B metallo-β-lactamase.
- The activity of sulbactam-ETX2514 was consistent across subsets of isolates from IAI, UTI, and HA-LRTI or from pediatric patients, as well as across geographic regions.
- The activity of sulbactam-ETX2514 observed in this study suggests that further *in vitro* characterization and clinical development is warranted to explore the utility of this agent.

Entasis Therapeutics 35 Gatehouse Dr. Waltham, MA 02151 1-781-810-0121 alita.miller@entasistx.com

Table 5. Activity of sulbactam-ETX2514 vs. comparator agents

bla	Europe	Latin/South Amer	United States	Asia/Pacific	MidEast/Africa	Ν
PER-1	1	4				5
GES-11	5				1	6
NDM-1		1				1
OXA-23	231	54	18	101	65	469
OXA-239		26				26
OXA-24	18		6			24
OXA-40		1	4			5
OXA-58	9	6		3	3	21
OXA-72	80	16	5	3	9	113
OXA-23; OXA-435	2				1	3
OXA-398		3				3
OXA-420	1					1
OXA-435	1					1
OXA-437	1					1
OXA-440				1		1
	13	6	26	1	5	51
	362	117	59	109	84	731
	b la PER-1 GES-11 0XA-23 0XA-23 0XA-239 0XA-239 0XA-40 0XA-58 0XA-40 0XA-398 0XA-435 0XA-435 0XA-435 0XA-435 0XA-435 0XA-435 0XA-435	blaedicalPER-11GES-115NDM-1-OXA-23231OXA-23231OXA-2418OXA-589OXA-7280OXA-7280OXA-398-OXA-4351OXA-4351OXA-4371OXA-4371OXA-4371OXA-4371OXA-4371OXA-43713OXA-4400-	blaadously selectionPER-11GES-115NDM-11OXA-23231OXA-2418OXA-589OXA-7280OXA-7280OXA-3352OXA-4351OXA1<	blaagong officiencesay syspectiencePER-114GES-1151DNM-111OXA-2323154OXA-2323154OXA-2323154OXA-24186OXA-5896OXA-728016OXA-728016OXA-7323OXA-43514OXA-435154OXA-43714OXA-43711OXA-43711OXA-43711OXA-44014OXA-44015I13626I13626	blaintegradintegradintegradintegradintegradPER-114GES-115NDM-11OXA-232315418101OXA-24186OXA-24186OXA-58963OXA-72801653OXA-72801653OXA-39821OXA-4351OXA-4371OXA-43711OXA-4401OXA-4351OXA-4351OXA-4371OXA-4371OXA-440 </td <td>blaintegration<t< td=""></t<></td>	blaintegration <t< td=""></t<>

References

- 1. Centers for Disease Control (2016)
- http://www.cdc.gov/drugresistance/index.html Potron, A., et al., (2015) "Emerging Broad Spectrum
- Resistance in *P. aeruginosa* and *A. baumannii*: Mechanisms and Epidemiology", Int. J. Antimicrob. Ag. 45:565-568 CLSI M07-A10 (2015) "Methods for dilution antimicrobial
- susceptibility tests for bacteria that grow aerobically, approved standard"
- CLSI M100-S25 (2015) "Performance standards for bacterial susceptibility testing"

Acknowledgements

We would like to thank all the members of the former research team at AstraZeneca Infection for their invaluable contributions to this project.